2019.07.09

武汉3D打印服务:3D打印技术对金属3D打印粉末有什么要求?

1.jpg

与传统的工业制造方式相比,3D打印工艺几乎不会造成金属材料浪费,而且这种“增材制造”直接成形的特点使得产品在生产过程中的设备问题大大减少。下面,我们一起与银纳科技一起来看看,3D打印技术对金属3D打印粉末有什么要求?

金属粉体材料是金属3D打印工艺的原材料,其粉体的基本性能对最终的成型的制品品质有着很大的关系。金属3D打印对于粉体的要求主要在于化学成分、颗粒形状、粒度及粒度分布、流动性、循环使用性等。

1、化学成分

原料的化学主要成分包括金属元素和杂质成分,主要金属元素常用的有Fe、Ti、Ni、Al、Cu、Co、Cr以及贵金属Ag、Au等。杂质成分有还原铁中的Si、Mn、C、S、P、O等,从原料和粉末生产中中混入的其他杂质等,粉体表面吸附的水及其他气体等。

在成型过程过程,杂质可能会与基体发生反应,改变基体性质,给制件品质带来负面的影响。夹杂物的存在也会使粉体熔化不均,易造成制件的内部缺陷。粉体含氧量较高时,金属粉体不仅易氧化,形成氧化膜,还会导致球化现象,影响制件的致密度及品质。

因此,需要严格控制原料粉体的杂质及夹杂以保证制品的品质,所以,3D打印用金属粉体需要采用纯度较高的金属粉体原料。

2、颗粒形状、粉体粒度及粒度分布

a、形状要求。常见的颗粒的形状有球形、近球形、片状、针状及其他不规则形状等。不规则的颗粒具有更大的表面积,有利于增加烧结驱动。但球形度高的粉体颗粒流动性好,送粉铺粉均匀,有利于提升制件的致密度及均匀度。因此,3D打印用粉体颗粒一般要求是球形或者近球形。

b、粉体粒度及粒度分布。研究表明,粉体是通过直接吸收激光或电子束扫描时的能量而熔化烧结,粒子小则表面积大,直接吸收能量多,更易升温,越有利于烧结。此外,粉体粒度小,粒子之间间隙小,松装密度高,成形后零件致密度高,因此有利于提高产品的强度和表面质量。但粉体粒度过小时,粉体易发生粘附团聚,导致粉体流动性下降,影响粉料运输及铺粉均匀。

所以细粉、粗粉应该以一定配比混合,选择恰当的粒度与粒度分布以达到预期的成形效果。

3、粉体的工艺性能要求

粉体的工艺性能主要包括松装密度、振实密度、流动性和循环利用性能。

a、松装密度是粉末自然堆积时的密度,振实密度是经过振动后的密度。球形度好、粒度分布宽的粉末松装密度高,孔隙率低,成形后的零件致密度高成形质量好。

b、流动性。粉体的流动性直接影响铺粉的均匀性或送粉的稳定性。粉末流动性太差,易造成粉层厚度不均,扫描区域内的金属熔化量不均,导致制件内部结构不均,影响成形质量;而高流动性的粉末易于流化,沉积均匀,粉末利用率高,有利于提高3D

打印成形件的尺寸精度和表面均匀致密化。

c、循环性能。3D打印过程结束后,留在粉床中未熔化的粉末通过筛分回收仍然可以继续使用。但长时间的高温环境下,粉床中的粉末会有一定的性能变化。需要搭配具体工艺选用回收率。

上一篇:详解SLA光固化3D打印机工作原理

下一篇:3D打印服务:在医疗行业中3D打印的应用前景

返回列表